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Abstract

We analyzed how the approach developed for the microindentation of non-uniform elastic solids can be adapted to

analyze the atomic force microscopy (AFM) probing of ultrathin (1–100 nm thick) polymer films on a solid substrate, as

well as polymer films with a multilayered structure. We suggested that recent Johnson’s modification of the contact

mechanics model that included a viscoelastic contribution could also be utilized to analyze rate-dependent loading data

for polymer surfaces. The graded model proposed for microindentation experiments was modified allowing to account

not only for variable elastic moduli within different layers but also for the gradient of properties between layers within a

transition zone. Two examples of a recent application of this model for molecularly thick hyperbranched polymer

monolayers (<3 nm thick) and tri-layered polymer films (20–40 nm thick) tethered to a solid substrate were presented

and discussed. In both cases, complex shapes of both loading curves and elastic modulus depth profiles obtained from

experimental AFM data were successfully fitted by the graded model with realistic structural parameters.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Probing of the surface mechanical properties with

nanometer-scale lateral and vertical resolution became a

reality upon introduction of nanomechanical probing

based on atomic force microscopy principles (AFM)

[1,2]. Despite numerous technical issues associated with

this AFM probing (e.g., non-axial loading, jump-into

contact, nanoscale contact area, high local pressure, and

topographical contributions), a number of successful

applications of this approach have been demonstrated to

date [3–5]. Recent applications to polymeric materials

included nanomechanical probing of polymer hydrogels,
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thin polymer films, fiber-reinforced composites, organic

lubricants, self-assembled monolayers, polymer blends,

block-copolymers, polymer brushes, individual macro-

molecules, and biological materials [6–10]. Absolute

values of the elastic modulus were measured in the range

from 0.001 to 30 GPa and in a wide range of tempera-

tures and frequencies, for organic films with thickness

down to 2 nm, and with vertical and lateral resolution as

low as 1–2 and 5–10 nm, respectively. Elastic moduli

(loss and storage), surface glass transition temperatures,

and relaxation times all have been obtained with rea-

sonable confidence by applying direct force–distance

measurements and/or cantilever modulated (vertically as

well as laterally) modes [11–13].

Spatial resolution unachievable by any other prob-

ing technique makes AFM nanomechanical probing a

unique experimental tool. We believe that a further

expansion of the AFM-based probing of ultrathin
ed.
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(below 10 nm) polymer films in the contact mode will

rely on solving several fundamental issues: sophisticated

evaluation of a substrate role in elastic response, the

depth profiling of the elastic properties for multilayered

and non-uniform films, and the evaluation of the rate-

dependent contribution caused by the viscoelastic nature

of polymeric materials (especially in the vicinity of the

glass transition). In the present publication, we briefly

discuss recent developments from our laboratory and

recent results of corresponding research directly related

to these topics.
2. Background: pure elastic response

The derivation of the elastic modulus from the AFM

cantilever deflection data can be conducted by using a

two-spring model of the interacting cantilever and the

elastic surface (Fig. 1). The resulting indentation (pen-

etration) depth is a function of the applied force (normal

load) P , tip geometry (radius R or parabolic focus dis-
tance c), and the mechanical and adhesion properties of
the contacting bodies. The normal load is calculated as

P ¼ kn � zdefl, where kn is the vertical spring constant of
the cantilever. The R (or c) and kn are initial parameters,
which must be calibrated before analysis. The Poisson’s

ratio, m, is a material parameter assumed to be known.
It has been shown that the general relationship be-

tween indentation depth, h, and normal load P can be
presented in the form [14,15]:

P ¼ ahb ð1Þ
Fig. 1. A two-spring model used to describe tip–surface inter-

actions.
where a and b are specific model parameters (e.g.,

b ¼ 3=2 for both Hertzian and parabolic Sneddon’s

contacts) [16].

The analysis of the indentation data and the calcu-

lation of Young’s modulus can be conducted with the

Sneddon formula [17]. The Sneddon model gives the

relationship between surface stiffness, dP=dh and

Young’s modulus, E0, in the form:

dP
dh

¼ 2
ffiffiffi

A
p
ffiffiffi

p
p E0 ð2Þ

where E0 is the composite modulus defined as follows:

1

E0 ¼
1� m21
E1

þ 1� m22
E2

ð3Þ

E1 and E2 are elastic moduli of surface and an indentor
(tip).

From dP=dh dependence and the contact area vari-
ation for a specific shape of the indentor (circular,

pyramidal, and parabolic) one can evaluate the absolute

value of the elastic modulus from Eq. (2). For a routine

estimation of the elastic modulus for small indentation

depth, the Hertzian model of a sphere-plane contact is

routinely applied. For larger indentations, the Sneddon

model with parabolic tip and a plane surface contact is

successfully used. The Sneddon’s equation gives results

similar to the Hertzian equation but does not contain

maximum indentation depth limitation and, thus, is

usually used in our research.

The general Sneddon’s equation can be converted to

an appropriate numerical form applicable for AFM data

processing as was discussed earlier [18]. For the para-

bolic indentor shape (best approximation for the AFM

tip end) it gives an expression for the calculation of the

current value of elastic modulus for a given indentation

depth (non-uniform modulus distribution):

Ei ¼
1

2
ffiffiffi

R
p

b
ð1� v2Þkn

Dzdefl;i;i�1
ffiffiffi

h
p

Dhi;i�1
ð4Þ

where b ¼ Acros=A, Acros is cross-sectional indentor area
at indentation depth h from the apex, b is equal to 2
for elastic deformation; and i, i� 1 refers to adjacent
indentor (tip) displacements. This and other similar

equations were used in our recent studies utilizing AFM

probing of a variety of polymer surfaces [9,12,17,19,20].

Two major contributions cause significant deviations

from pure elastic contact mechanical behavior (Fig. 2).

First, a viscoelastic phenomenon results in additional

viscous contribution causing ‘‘positive’’ deviations of the

loading curves from the expected Hertzian behavior for

purely elastic solids. Second, the presence of a stiff

substrate beneath a very thin polymer film contributes

in a limited film deformation under a high load resulting

in ‘‘negative’’ deviations from pure elastic behavior
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Fig. 2. Schematics of the deviation of the loading behavior

from the Hertzian model due to the viscoelastic contribution

and to the presence of a stiff substrate.
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(Fig. 2). These two major complications can be treated

as discussed below.
0 10 20 30 40 50 60 70 80

0

50

100

relaxation time 
    increases

Pe
ne

tra

Load, nN

Fig. 3. (a) Examples of the fitting of the experimental data for a

set of epoxy-based composite materials and the tri-block co-

polymer viscoelastic film (E ¼ 0:14 GPa) with the Hertzian

model (for experimental detail see Ref. [21]. (b) Theoretical

calculation of the shape of the loading curves for a polymer

surface with a variable relaxation time as estimated from

Eq. (5).
3. Rate-dependent response

The loading behavior (indentation depth versus

normal load variation) of a wide range of polymer

composites in glassy or rubbery states within limits of

the elastic deformation can be reasonably well described

with the Hertzian model (Fig. 3). Corresponding fits

produced absolute values of the elastic modulus close to

that expected for the bulk materials as demonstrated in

Fig. 3 for several epoxy-based polymer composites as

described in detail elsewhere [21]. However, a Hertzian

fit was not satisfactory for a compliant film fabrica-

ted from a tri-block copolymer in the viscoelastic state

(Fig. 3).

To analyze this rate-dependent behavior for the visco-

elastic materials, we followed a Johnson’s suggestion for

the relationship between the contact area, a, load, P , and
loading time, t, for viscoelastic solids in the form [22]:

a3ðsÞ ¼ 3RUT
4E	

1
½s � ð1� kÞð1� expð�sÞÞ� ð5Þ

where s ¼ t=T is the reduced time, k ¼ E	
1=E	

0 is the

reduced modulus with E	
0 being the initial, instantaneous

modulus, and E	
1 is the ‘‘equilibrium’’ relaxed modulus

for an infinitely slow load, U ¼ P=t is the rate of load-
ing, and T is the relaxation time of material.
This relationship was derived for a three-parameter

linear viscoelastic model [22]. By varying two primary

variables, E0 and T , fitting the experimental data ob-
tained at different rates can be conducted. It is worth to
note that the presence of the viscous contribution com-

ponent can principally change the shape of the loading

curve from the usual convex to concave as demonstrated

for a series of model situations for a material with a

variable relaxation time (Fig. 3). In fact, such concave

curves have been observed for the viscoelastic materials

in AFM experiments [18,21,23].
4. Substrate influence and multilayered surface structures

Several contact mechanics models have considered

the role of concurrent deformation of a thin surface

layer and an underlying substrate having very different
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elastic moduli [24–26]. These models considered a dif-

ferent level of adhesion between films and substrates,

suggested modified Hertzian equations, and demon-

strated how the loading curves could be affected. How-

ever, these models have severe limitations related to both

poorly defined interlayer interaction conditions and

unstable solutions. In addition, these models considered

only two-layered cases (film+ substrate or bi-layered

films).

A different approach was proposed by Doerner and

Nix for analyzing the elastic recovery of solid thin films

from microindentation experiments [27,28]. This ap-

proach was based on the representation of the depth-

dependent compliance of two-layered elastic solids (e.g.,

film-substrate) as a linear combination of corresponding

compliances weighted with a ‘‘transition function’’

reflecting a level of mutual influence of the two con-

stituents (compare with the definition of the composite

elastic modulus from Eq. (3)):

1

E
¼ 1

Ef
� ð1� ea�t=hÞ þ 1

Es
� ðea�t=hÞ ð6Þ

where Ef and Es are the elastic moduli of the film and the
substrate, h is the thickness of the film, t is the inden-
tation depth, and a is the transition parameter respon-
sible for mutual influence of substrate and film

deformations. This approach was applied to the analysis

of the microindentation data and produced consistent

results for the elastic modulus and its depth profile of

thin hard coatings with the thickness down to 10 nm

[29–32].

In our efforts to adapt this approach to analyze the

loading curves obtained from AFM force–distance data,

we used Sneddon’s or Hertzian equations (3) and (4).

Then, we added an additional step in the fitting proce-
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Fig. 4. The visualization of the depth profile for the surface

with two different levels of the elastic modulus and the extensive

interfacial zone (a is 10�4, here and for other illustrative

examples the values of the elastic modulus are arbitrary).
dure assuming that at any given indentation depth the

elastic modulus value calculated from (4) is not a con-

stant value but a variable represented by the Nix equa-

tion (6). Overall depth profile EðhÞ and/or corresponding
loading curve were used for fitting to find model

parameters with the best thickness of the transition

zone. The fitting procedure used a variable value of the

elastic moduli of the film and the transition parameter a
with the substrate elastic modulus usually kept to its

bulk value. The transition parameter is empirically

determined for each specific case.

To clarify the meaning of this parameter, we repre-

sented Eq. (6) in a different form as will be elaborated in

great detail elsewhere [33]:
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Fig. 5. The influence of the transition parameter a on the

overall shape of the depth distribution curve of the elastic

moduli. (a) A two layer model with a variable transition zone (a
is 10�3, 5· 10�5, 10�5, 5· 10�6, 10�6). (b) A tri-layer model with
a variable transition zone. The decreasing of the value of a
parameter results in the increasing of the transition zone and

the smearing of the depth profile (a is selected equal for both
layers and is 10�4, 5· 10�5, 10�5, 5 · 10�6, 10�6).
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E0 ¼ E1 � E0
1þ expð�aðE1 � E0Þðz� z0ÞÞ

ð7Þ

This representation derived independently‘‘visualizes’’

the depth profile for the interface with two different

levels of the elastic moduli (Fig. 4). In this representa-

tion, two different levels of the elastic moduli are sepa-

rated by the interfacial zone with the thickness

controlled by the transition parameter a. High a-value
corresponds to a sharp interface with virtually no gra-

dient of the elastic modulus between two layers.

Decreasing the value of the transition parameter results

in a gradual increase of the transition zone with a

broadening gradient expanding over larger and larger

depth (increasing distances) (Fig. 5). Moreover, Eq. (7)

can be expanded to include more complicated graded

surface profiles such as a tri-layer profile presented in

Fig. 5 as will be discussed elsewhere [33]. Through the

variation of the two transition parameters and the values

of the elastic moduli, different complex functions of non-

homogeneous depth profiles can be generated. One such

example is demonstrated by converting an initial tri-step

function with sharp boundaries to a completely gradual,

rising function (Fig. 5).
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Fig. 6. (a) A typical force–distance curve obtained for the

molecular monolayer from hyperbranched molecules. Initial

part with a low slope (right bottom) corresponds to the

monolayer deformation. Zero deflection corresponds to initial

undisturbed state. (b) The fitting of the experimental data

(empty circles) by the two-layer model (solid line) and Hertzian

model (dot line) drawn for the same value of the elastic

modulus.
5. Selected examples of polymer surface layers

Experimental data in the form of force–volume mode

for surface areas of 1· 1 lm with 32 · 32 or 64· 64 data
points were obtained on Dimension 3000 and Multi-

mode Nanoscope IIIa microscopes (Digital Instruments)

according to a usual procedure adapted in our lab

[34,35]. Spring constants were measured independently

with added-mass technique and selected to be in the

range from 0.05 to 5 N/m depending on sample elasticity

and according to the criteria suggested earlier [36,37]. A

number of force–distance curves (at least 15–20) was

selected from an experimental array to represent typical

shapes found in an overall surface histograms and for

further analysis. These selected curves were averaged,

smoothed, and used for the calculation of the depth

profile and for the fitting procedure as described above.

Here, we briefly present two selected examples of

probing of ultrathin polymer films with detailed

description of sample preparation and data collection.

5.1. Monolayers from dendritic molecules

Dendritic molecules studied here are represented by a

hyperbranched polyesters of a third generation with

hydroxyl terminal groups. The molecules were adsorbed

on a functionalized silicon wafer surface to form a

monolayered surface structure with thickness close to

3 nm and tethered to the solid substrate as described in

detail elsewhere [38,39]. Original force–distance curves
showed non-monotonic shape, which is a characteristic

of a compliant layer located on a stiff substrate (Fig. 6).

In fact, the loading curve for this monolayer showed

significant deviations from conventional Hertzian

behavior for the layer deformation beyond 2 nm (Fig. 6).

However, the shape of the loading curves can be

readily reproduced by using the multilayered model

discussed above (Fig. 6). The two-layer model also de-

scribes the elastic modulus depth profile showing

increasing absolute value for the larger deformation

(Fig. 7). An overall profile obtained by the fitting pro-

cedure reveals the graded shape with a very thin (2.5 nm)

compliant layer with the elastic modulus of 30–80 MPa
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Fig. 8. (a) A force–distance curve for the tri-layer polymer
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and the transition zone of 3 nm between the polymer

monolayer and the silicon substrate as represented in the

refined model (Fig. 7). These values correspond to

structural parameters expected for polyester hyper-

branched molecules tethered to the silicon oxide surface

through epoxy-terminated self-assembled monolayer

[38].
5.2. Tri-layer hard-soft-hard polymer film

‘‘Triplex’’ polymer coatings, recently fabricated in

our lab, represent a more complex case of a non-uniform

elastic response distribution along the surface normal

[40]. In this coating, a rubbery interlayer composed of a

tri-block copolymer (poly[styrene-b-(ethylene-co-butyl-

ene)-b-styrene]) was chemically tethered to the epoxy-

functionalized silicon substrate and capped with a hard
layer of UV-polymerized polymethyl methacrylate [41].

The thickness of the compliant central interlayer was 8–

10 nm and the thickness of the topmost layer was in the

range of 5–30 nm. It has been demonstrated that the

AFM probing could resolve three different deforma-

tional regimes caused by a consequential deformation of

different polymer layers [42].

Indeed, initial inspection of the force–distance curves

revealed their highly non-monotonic character (Fig. 8).

The corresponding loading curve displayed the S-shaped

behavior far from being close to conventional mono-

tonic Hertzian response (Fig. 8). However, the refining

of the parameters of the tri-layered model constructed

for these films produced excellent fitting of the complete

loading curve with the complex shape (Fig. 8). On the
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other hand, the depth profile of the elastic modulus

clearly showed three different regions with higher and

lower apparent elastic moduli (Fig. 9). The best fit has

been achieved with the tri-layer model composed of the

topmost hard layer of 5 nm thick with the elastic mod-

ulus of 2000 MPa, a central interlayer of 20 nm thick

and the apparent elastic modulus of 800 MPa, and the

solid substrate with the elastic modulus of 160 GPa (Fig.

9). The thickness of the transition zone did not exceed 20

nm that indicates a gradient boundary between polymer

layers in this tri-layer nanocoating.
6. Conclusions

In conclusion, we demonstrated that the approach

developed for the microindentation of non-uniform
elastic solids can be adapted to analyze the AFM

probing of ultrathin (tens of nanometers) polymer films

on solid substrates and polymer films with the vertically

layered structure. This graded model allows to account

not only for the variable elastic modulus within different

layers, but also for the different gradient of the elastic

properties between adjacent layers described by the

transition zone parameter. Two examples of the appli-

cations of the approach proposed for the molecularly

thick hyperbranched polymer monolayer and the tri-

layer polymer film tethered to the solid substrate have

been presented and discussed. In both cases, the complex

shape of the experimental loading curves and the elastic

modulus depth profiles were successfully simulated using

the graded models with realistic structural parameters.
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